Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen Phytophthora megakarya and Its Close Relative Phytophthora palmivora.

Identifieur interne : 000151 ( Main/Exploration ); précédent : 000150; suivant : 000152

Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen Phytophthora megakarya and Its Close Relative Phytophthora palmivora.

Auteurs : Abraham Morales-Cruz [États-Unis] ; Shahin S. Ali [États-Unis] ; Andrea Minio [États-Unis] ; Rosa Figueroa-Balderas [États-Unis] ; Jadran F. García [États-Unis] ; Takao Kasuga [États-Unis] ; Alina S. Puig ; Jean-Philippe Marelli ; Bryan A. Bailey [États-Unis] ; Dario Cantu [États-Unis]

Source :

RBID : pubmed:32354704

Abstract

Phytophthora megakarya and P. palmivora are oomycete pathogens that cause black pod rot of cacao (Theobroma cacao), the most economically important disease on cacao globally. While P. palmivora is a cosmopolitan pathogen, P. megakarya, which is more aggressive on cacao than P. palmivora, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The P. megakarya genome is exceptionally large (222 Mbp) and nearly twice the size of P. palmivora (135 Mbp) and most known Phytophthora species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in P. palmivora In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In P. megakarya we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of Phytophthora genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.

DOI: 10.1534/g3.120.401014
PubMed: 32354704
PubMed Central: PMC7341134


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen
<i>Phytophthora megakarya</i>
and Its Close Relative
<i>Phytophthora palmivora</i>
.</title>
<author>
<name sortKey="Morales Cruz, Abraham" sort="Morales Cruz, Abraham" uniqKey="Morales Cruz A" first="Abraham" last="Morales-Cruz">Abraham Morales-Cruz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Minio, Andrea" sort="Minio, Andrea" uniqKey="Minio A" first="Andrea" last="Minio">Andrea Minio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Figueroa Balderas, Rosa" sort="Figueroa Balderas, Rosa" uniqKey="Figueroa Balderas R" first="Rosa" last="Figueroa-Balderas">Rosa Figueroa-Balderas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Jadran F" sort="Garcia, Jadran F" uniqKey="Garcia J" first="Jadran F" last="García">Jadran F. García</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Puig, Alina S" sort="Puig, Alina S" uniqKey="Puig A" first="Alina S" last="Puig">Alina S. Puig</name>
<affiliation>
<nlm:affiliation>Subtropical Horticultural Research Station, USDA/ARS, Miami, FL 33158, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Marelli, Jean Philippe" sort="Marelli, Jean Philippe" uniqKey="Marelli J" first="Jean-Philippe" last="Marelli">Jean-Philippe Marelli</name>
<affiliation>
<nlm:affiliation>Mars Wrigley Plant Sciences Laboratory, 95616 Davis California.</nlm:affiliation>
<wicri:noCountry code="subField">95616 Davis California</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California, dacantu@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Viticulture and Enology, University of California Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32354704</idno>
<idno type="pmid">32354704</idno>
<idno type="doi">10.1534/g3.120.401014</idno>
<idno type="pmc">PMC7341134</idno>
<idno type="wicri:Area/Main/Corpus">000206</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000206</idno>
<idno type="wicri:Area/Main/Curation">000206</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000206</idno>
<idno type="wicri:Area/Main/Exploration">000206</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen
<i>Phytophthora megakarya</i>
and Its Close Relative
<i>Phytophthora palmivora</i>
.</title>
<author>
<name sortKey="Morales Cruz, Abraham" sort="Morales Cruz, Abraham" uniqKey="Morales Cruz A" first="Abraham" last="Morales-Cruz">Abraham Morales-Cruz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Minio, Andrea" sort="Minio, Andrea" uniqKey="Minio A" first="Andrea" last="Minio">Andrea Minio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Figueroa Balderas, Rosa" sort="Figueroa Balderas, Rosa" uniqKey="Figueroa Balderas R" first="Rosa" last="Figueroa-Balderas">Rosa Figueroa-Balderas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Jadran F" sort="Garcia, Jadran F" uniqKey="Garcia J" first="Jadran F" last="García">Jadran F. García</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Viticulture and Enology, University of California Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Puig, Alina S" sort="Puig, Alina S" uniqKey="Puig A" first="Alina S" last="Puig">Alina S. Puig</name>
<affiliation>
<nlm:affiliation>Subtropical Horticultural Research Station, USDA/ARS, Miami, FL 33158, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Marelli, Jean Philippe" sort="Marelli, Jean Philippe" uniqKey="Marelli J" first="Jean-Philippe" last="Marelli">Jean-Philippe Marelli</name>
<affiliation>
<nlm:affiliation>Mars Wrigley Plant Sciences Laboratory, 95616 Davis California.</nlm:affiliation>
<wicri:noCountry code="subField">95616 Davis California</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Viticulture and Enology, University of California Davis, California, dacantu@ucdavis.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Viticulture and Enology, University of California Davis, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">G3 (Bethesda, Md.)</title>
<idno type="eISSN">2160-1836</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Phytophthora megakarya</i>
and
<i>P. palmivora</i>
are oomycete pathogens that cause black pod rot of cacao (
<i>Theobroma cacao</i>
), the most economically important disease on cacao globally. While
<i>P. palmivora</i>
is a cosmopolitan pathogen,
<i>P. megakarya</i>
, which is more aggressive on cacao than
<i>P. palmivora</i>
, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The
<i>P. megakarya</i>
genome is exceptionally large (222 Mbp) and nearly twice the size of
<i>P. palmivora</i>
(135 Mbp) and most known
<i>Phytophthora</i>
species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in
<i>P. palmivora</i>
In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In
<i>P. megakarya</i>
we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of
<i>Phytophthora</i>
genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">32354704</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2160-1836</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>G3 (Bethesda, Md.)</Title>
<ISOAbbreviation>G3 (Bethesda)</ISOAbbreviation>
</Journal>
<ArticleTitle>Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen
<i>Phytophthora megakarya</i>
and Its Close Relative
<i>Phytophthora palmivora</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>2241-2255</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/g3.120.401014</ELocationID>
<Abstract>
<AbstractText>
<i>Phytophthora megakarya</i>
and
<i>P. palmivora</i>
are oomycete pathogens that cause black pod rot of cacao (
<i>Theobroma cacao</i>
), the most economically important disease on cacao globally. While
<i>P. palmivora</i>
is a cosmopolitan pathogen,
<i>P. megakarya</i>
, which is more aggressive on cacao than
<i>P. palmivora</i>
, has been reported only in West and Central Africa where it has been spreading and devastating cacao farms since the 1950s. In this study, we reconstructed the complete diploid genomes of multiple isolates of both species using single-molecule real-time sequencing. Thirty-one additional genotypes were sequenced to analyze inter- and intra-species genomic diversity. The
<i>P. megakarya</i>
genome is exceptionally large (222 Mbp) and nearly twice the size of
<i>P. palmivora</i>
(135 Mbp) and most known
<i>Phytophthora</i>
species (∼100 Mbp on average). Previous reports pointed toward a whole-genome duplication (WGD) in
<i>P. palmivora</i>
In this study, we demonstrate that both species underwent independent and relatively recent WGD events. In
<i>P. megakarya</i>
we identified a unique combination of WGD and large-scale transposable element driven genome expansion, which places this genome in the upper range of
<i>Phytophthora</i>
genome sizes, as well as effector pools with 1,382 predicted RxLR effectors. Finally, this study provides evidence of adaptive evolution of effectors like RxLRs and Crinklers, and discusses the implications of effector expansion and diversification.</AbstractText>
<CopyrightInformation>Copyright © 2020 Morales-Cruz et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Morales-Cruz</LastName>
<ForeName>Abraham</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-6122-2649</Identifier>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Shahin S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minio</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2643-9209</Identifier>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figueroa-Balderas</LastName>
<ForeName>Rosa</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-3321-1376</Identifier>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>García</LastName>
<ForeName>Jadran F</ForeName>
<Initials>JF</Initials>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kasuga</LastName>
<ForeName>Takao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Crops Pathology and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Davis, California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Puig</LastName>
<ForeName>Alina S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Subtropical Horticultural Research Station, USDA/ARS, Miami, FL 33158, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marelli</LastName>
<ForeName>Jean-Philippe</ForeName>
<Initials>JP</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-2791-7567</Identifier>
<AffiliationInfo>
<Affiliation>Mars Wrigley Plant Sciences Laboratory, 95616 Davis California.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Bryan A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cantu</LastName>
<ForeName>Dario</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4858-1508</Identifier>
<AffiliationInfo>
<Affiliation>Department of Viticulture and Enology, University of California Davis, California, dacantu@ucdavis.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>G3 (Bethesda)</MedlineTA>
<NlmUniqueID>101566598</NlmUniqueID>
<ISSNLinking>2160-1836</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RxLR motif</Keyword>
<Keyword MajorTopicYN="N">effectors</Keyword>
<Keyword MajorTopicYN="N">oomycetes</Keyword>
<Keyword MajorTopicYN="N">plant diseases</Keyword>
<Keyword MajorTopicYN="N">transposable elements</Keyword>
<Keyword MajorTopicYN="N">whole-genome duplication</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32354704</ArticleId>
<ArticleId IdType="pii">g3.120.401014</ArticleId>
<ArticleId IdType="doi">10.1534/g3.120.401014</ArticleId>
<ArticleId IdType="pmc">PMC7341134</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytopathology. 2012 Apr;102(4):348-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2014 May 12;14:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24884411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30357350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Apr;17(4):540-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Mar 14;319(5869):1527-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:295-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Jun 10;15:180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24915764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Apr 12;21(7):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21419627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Feb 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Mar;45(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2018 Aug 25;56:21-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29768136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(8):e1003118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D81-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26612867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18299576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2007 Dec;17(6):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2018 Dec;46:34-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29455143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Apr 22;5:3657</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Apr;30(4):772-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 1;26(5):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Jan;95(1):99-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2006 Dec;19(12):1311-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17153915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Oct 1;29(19):2487-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20644199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Mar 12;10(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30862749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 May 14;13:185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2019 May 7;9(5):1331-1337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30923135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Aug;24(8):1348-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 20;17:385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27206972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jun;36(10):3420-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2349-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Aug;37(8):907-915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31375807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Jun 26;255(5511):704-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1134565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Sep;28(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Sep;105(9):1191-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25822186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):375-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2017 May 15;33(10):1581-1582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28093408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Dec;26(12):1663-1675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27934698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Oct 1;31(19):3210-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26059717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Oct 1;31(19):5654-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D170-D176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Nov 08;7:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17531802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genomics Hum Genet. 2008;9:143-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18505377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 May;27(5):722-736</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28298431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2016 Aug;32:7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27116367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2009 Aug 08;9:194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 26;8(12):e85385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24386473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2015 Dec;35:57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fly (Austin). 2012 Apr-Jun;6(2):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):1859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2019 Nov 14;20(1):238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31727128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Nov;11(11):1304-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22923046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 May;56(3):638-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18792934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2020 Feb;17(2):155-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31819265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Dec 25;9(2):173-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Nov;270(2):173-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 Aug;32(8):1047-1060</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30794480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 29;8(7):e70036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Mar;22(3):659-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 10;5(3):e9490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e47768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23185243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 May 15;22(10):1269-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Aug;109(8):1331-1343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31115251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2016 Dec;13(12):1050-1054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27749838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 May;2(5):333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Jun 20;15:211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24950923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1097-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Aug;8(8):1494-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23845962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jul 3;45(W1):W36-W41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28460038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2000 Dec 1;15(12):496-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11114436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Oct;1(5):687-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Mar 1;32(5):767-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26559507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Nov 28;14:839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24286285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 May 2;19(1):320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29720102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Oct;12(10):1403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 15;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21402904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Aug;10(4):332-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17707688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2017 Sep 15;18(1):730</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28915793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jul 2;46(W1):W95-W101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29771380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Aug;26(8):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Sep;26(9):2073-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jan;5(1):e1000325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119423</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Marelli, Jean Philippe" sort="Marelli, Jean Philippe" uniqKey="Marelli J" first="Jean-Philippe" last="Marelli">Jean-Philippe Marelli</name>
<name sortKey="Puig, Alina S" sort="Puig, Alina S" uniqKey="Puig A" first="Alina S" last="Puig">Alina S. Puig</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Morales Cruz, Abraham" sort="Morales Cruz, Abraham" uniqKey="Morales Cruz A" first="Abraham" last="Morales-Cruz">Abraham Morales-Cruz</name>
</region>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<name sortKey="Cantu, Dario" sort="Cantu, Dario" uniqKey="Cantu D" first="Dario" last="Cantu">Dario Cantu</name>
<name sortKey="Figueroa Balderas, Rosa" sort="Figueroa Balderas, Rosa" uniqKey="Figueroa Balderas R" first="Rosa" last="Figueroa-Balderas">Rosa Figueroa-Balderas</name>
<name sortKey="Garcia, Jadran F" sort="Garcia, Jadran F" uniqKey="Garcia J" first="Jadran F" last="García">Jadran F. García</name>
<name sortKey="Kasuga, Takao" sort="Kasuga, Takao" uniqKey="Kasuga T" first="Takao" last="Kasuga">Takao Kasuga</name>
<name sortKey="Minio, Andrea" sort="Minio, Andrea" uniqKey="Minio A" first="Andrea" last="Minio">Andrea Minio</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32354704
   |texte=   Independent Whole-Genome Duplications Define the Architecture of the Genomes of the Devastating West African Cacao Black Pod Pathogen Phytophthora megakarya and Its Close Relative Phytophthora palmivora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32354704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024